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Abstract. With c h i d  theories (and gravity) in mind, we use block renormaliiation-group 
( n c )  methods and RG equations t o  enamine the proposal by de  Alfdro, Fubini and Furlan 
that symmetry-breaking can be induced by the choice of conformal-invariant measurer. 

1. Introduction 

With the advent of string theories there has been a realization that all /oca/ field theories 
can be understood as low-energy effective theories of something more fundamental. 
This has been the working practice for two decades or  more in hadronic physics where 
chiral models have provided effective calculational tools (in both senses of ‘effective’) 
for describing the interactions of pions and  hadronic matter a t  low energies (see, for 
instance, d e  Alfaro et a /  1973). 

I n  this paper we look into some questions posed by a scheme for quantizing 
low-energy chiral theories, proposed by de  Alfaro et a/ (1981, 1983a, b,  1984) (see also 
Floreanini et a /  1984) in the context of ‘two-time’ quantization. The main idea is that 
the symmetry breaking that enables the u-field to have non-zero expectation values is 
due  to a non-canonical choice of measure in the path-integral ‘sum over histories’. 

Changing the measure from the canonical form has a long pedigree, both for scalar 
theories (Klauder 1970a, 1973, 1975, 1977a, b, 1979a, b, 1981, Nouri-Moghadam er a/ 
1978a, b, 1979, Ebbutt et a /  1982, Ogielski 1983 and  Gent et a /  1986) and  for gravity 
(Klauder 1970b, Klauder and Aslaksen 1970, Isham and Kakas 1984a, b) [also con- 
sidered at some length by de  Alfaro et a / ] .  For scalar theories the motives have been 
( a )  to give sense to perturbation theory for non-renormalizable theories (in analogy 
to singular potential theory) and ( b )  to evade triviality in renormalizable, but trivial, 
theories. (The motives in quantum gravity have been more ambitious; viz, to quantize 
the metric in such a way as to prohibit unitarily implementable translations of it, so 
as to preserve its signature. Necessarily this is a much more difficult programme, and 
we shall make no comments on it here.) 

The approach adopted by d e  Alfaro et a /  is essentially that of Klauder (1981) 
(continued by Ogielski 1983 and  Gent et a/ 1986). Consider the scalar sector of chiral 
theories, as exemplified by the u-model with fields &, (a = 1 , 2 , 3 , 4 )  possessing a 
global S 0 ( 4 ) - S U ( 2 )  x SU(2)  invariance. This invariance is broken to SO(3) - SU(2) 
by the ‘background’ 

(014<v10) =.f,L (1.1) 

,A, =fn8,.4+ {t., (Olh.,(x)lO) = 0. (1 .2)  

with respect to which m,, decomposes as 
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The  dimensional parameter f, describes the low-energy coupling of pions to any 
hadronic system. 
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It is customary to take the chiral Lagrangian as 

(1.3) 
If p2> 0 the density (1.3) possesses the conventional 'Mexican-hat' potential that 
induces symmetry breaking. However, at a formal level d e  Alfaro er a1 have argued 
that the symmetry-breaking of (1.2) is better understood as a consequence of a 
non-canonical quantization procedure imposed upon the conformall~-invariant chiral 
Lagrangian density 

( 1.4) 

Specifically, we can attempt to preserve conformal invariance in the quantization 

1 2 2  Z=%J,&)*-S  4.+A(4i)2. 

-rp, = %a,&,)*+ A(&,)* 

with no dimensional parameter (and no  classical symmetry-breaking). 

procedure by summing over configurations 

Z =  dn,(+) exp - d4x& (1.5) 

with respect to the conformal[y-inuariant measure dCL,(+). This can he written (loosely) 
as 

d n d + ) = d n ( + ) ( F  & ( x ) ) ~  (1.6) 

I ( I  ) 

where 

(1.7) 

is the usual canonical (translationally-invariant) measure for which d n ( &  + A c r )  = 

d o ( & ) ,  and  n, denotes a formal product over all spacetime points. 
A priori there is nothing quantum-mechanically inconsistent about making such a 

choice. In an  operator formalism the change in measure (1.6) corresponds to replacing 
tne canonical equal-time commutation reiations 

[&,(x, t ) , n P ( y ,  r ) l = i s f r P @ Y x - y )  (1.8) 

by the affine commutation relations (Klauder 1973, 1977, 1979a, b,  Nouri-Moghadam 
et a1 1978a, b, 1979 and Ebbutt er a1 1982) 

(1.9) 

between &, and K , ,  the generators of scaling transformations. Formally, K , ( x )  = 

t (~ , (x )n , (x )+n, (x )~ , (x ) ) .  Since K, is expressed via an  operatorproduct that needs 
renormalization to make it properly defined, equations (1.8) and (1.9) might he expected 
to describe different theories. However, each choice (should they he different) makes 
sense quantum-mechanically, both being a generalization of the single degree-of- 
frccdnm re!a!ion [q ,  pj  = 1. 

In particular, on taking K, , ,  rather than ll,,, to be self-adjoint (i.e. requiring scale 
transformations to he unitarily implementable, rather than field translations) there is, 
a priori, no problem with unitarity. In fact, for the properly renormalized theory we 
shall find, embarrassingly, that changing the measure has changed nothing, and we 
are in the same equivalence class as  the canonical theory, which is almost cenainly 

[+,.(x, 1 ) .  K,(Y, 01 =i~, . ,~ , (x)~" ' (x-YY) 
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trivial (Liischer and  Weisz 1987, 1988a, 1989 and  Frohlich 1982). This is an example 
of the deceptive appearance of the path integral ( I S ) .  Only after implementing 
renormalization d o  we understand what a change of measure entails. This is second 
nature to many-body theorists, but less familiar to field theorists. Only for the low-energy 
effective theory, for which there is necessarily a unitarity bound, do we get new results. 
Even then we are in close correspondence with the canonical theory, as will be seen. 

More prosaically, Z can be written in terms of the canonical 'measure' d n  as 

(1.10) 

where 

9(+) =9(+) -26 '4 ' (0 )  In(+:). (1.11) 

~ ( + ) = 2 ( + ) - f N ~ S ' ~ ' ( 0 )  In(+Z) (1.12) 

(For an O(N)-invariant theory we would have had 

where a runs from 1 to N.) Had we worked in units in which h # 1, the regularized 
second term in (1.1 1) vanishes in the classical limit h -0 a n d  this represents a hidden 

in which S'4'(0)-0, we would automatically recover the canonical result. As we 
indicated earlier, the aim of Klauder and  others is to show that, while canonical 
quantization is never internally inconsistent, it may not always be appropriate. Changes 
as in (1.6) are most easily understood in lattice regularization. From this viewpoint, 
we are  considering the possibility that, in the  continuum limit, the resulting theory 

partly in anticipation of this that scale-invariant changes of measure were proposed. 
In such a formalism dimensional regularization is known to be overrestrictive, since 
changes of measure along the lines of (1.6) are able to change the equivalence class 
of the theory (Chen et a/  1982, Chen and Fisher 1985, Liu and Fisher 1990). [An 
analytic, rather than numerical, demonstration of the restrictiveness of dimensional 
regularization is provided by the large-N limit of (1.12) (Rivers 1983 and Gent 1984).j 

Let us now return to the approach of de  Alfaro el  a/,  in which the theory (1 .5 )  is 
seen as a low-energy model with a phenomenological cut-off A (or, equivalently, a 
lattice length a =A- ' ) .  Then c ? ' ~ ' ( O )  is most naturally interpreted as 

Si4'(0) = A' (1.13) 

- . . n . r + . . m  mnrh..n;nll aman+ nf r n a s r ~ ~  :f * . v n . ~  + A  or lnr .  A : m ~ n . : n n ~ l  ran..lnriv-t:nn 'l"y,.',..,. I..*-..Y...C", ....uI,. ". ,, ,.* I" y " v ~ .  Y..I.~.._I."I.YI '.6Y1YL1LYL."..r 

wl!! be in a different universa!i!y c!ass from the canonica! theory. 4 5  we said, i t  was 

to give an 'effective' potential 

v(+)= A ( + ; J - ~ A ~  i n ( & )  (1.14) 

from (1.11). The choice (1.13) is the most naive way in which to introduce an energy 
scale, but for the moment we take it  seriously. Insofar as the 'classical' potential v(+) 
describes the symmetry-breaking of the model correctly, the infinite 'witches' hat' spike 
at $,, = 0 forces the minima to lie on the surface I+:!= A ' / f i >  0. A naive saddle-poi"! 
approximation to (1.10) that identifies the free energy of the system with v(6) is then 
compatible with ( l , l ) ,  withf, determined from the q54#0 minimum as 

f , = ~ l ( l / h ) " ~  (1.15) 

thus breaking both the SO(4) and  conformal invariance. 
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The over-riding problem, unanswered by de  Alfaro et a/  is whether the symmetry- 
breaking of (1.11). induced by the change in measure, survives radiative corrections 
(i.e. renormalization). In the next section we shall implement renormalization-group 
block transformations upon the cut-off theory (1.14) in the manner suggested by Wilson 
(1972). The calculation is fairly primitive, but it shows that symmetry-breaking can, 
indeed, be induced by a change in measure, provided the coupling strength A is not 
too large. This justification of the approach of d e  Alfaro er a /  is not an artefact of the 
simplification that we have made. In the final sections of this paper it will be shown 
that a symmetry-breaking phase survives a more sophisticated analysis based o n  the 
Callan-Symanzik renormalization-group equations. 

The middle part of the paper is concerned with whether symmetry-breaking can 
be induced by a change in measure in the continuum-field theory (A-CO), for which 
overt symmetry-breaking is no  longer possible. We have every expectation that this is 
not the case (Klauder 1981, Ogielski 1983 and Gent el  a/  1986), but aspecific calculation 
needs to be performed. We find that a high-temperature series analysis is sufficient to 
demonstrate non-vanishing logarithmic terms in the continuum-limit critical behaviour 
that enforce triviality. Hence the analysis of d e  Alfaro er al is particular to effective 
theories with a cur-off: 

2. Symmetry breaking in the cut-off theory 

For simplicity, we consider the case of a single real scalar field 4 ( x )  in d = 4 Euclidean 
dimensions, quantized with respect to the conformally-invariant measure 

d a d + )  =n (d$(X)I4(x)I). (2.1) 

This one-field model is complicated enough to display the logarithmic effect of the 
change of measure on the Lagrangian density 

z ~ ( 4 )  =f(J,4)2+A44 (2.2) 
while only possessing the discrete reflection symmetry 4 + -4, and hence evading 
problems of Goldstone modes present in the chiral model. 

As we saw earlier, if 

v($) =A+'-f8'" '(O) In qb2= A@4-$A41n($2/A') (2.3) 
is taken to determine the symmetry of the theory, the effect of the log 4' term is to 
induce symmetry-breaking in which, as a first guess 

U = 1 ( + ) 1 =  A ( + A ) ' ' ~  (2.4) 
the position of the minimum of v for a given cut-off A.  Because of the absence of m' 
terms, it is convenient to work with the dimensionless field $ = 4/11, in terms of which 

V ( $ ) = A ~ ( A $ ' - $ I ~  6') (2.5) 

with minima at U = 6 = 
Beyond this semiclassical approximation the position is unclear. The logarithmic 

divergence at the origin of 4 is the weakest possible, and it is not obvious whether 
the symmetry-breaking effects are stable to quantum fluctuation. Conventional per- 
turbative renormalization arguments are of little use here, and an alternative approach 
is necessary. Such a method has been given by Fukuda (1976), who has readapted 
Wilson's renormalization group formulae (Wilson 1972) to a theory with a cut-off. 
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We begin with the definition of the effective potential (free energy) V ( & )  (Fukuda 
and Kyriakopoulos 1975) as the w +CO limit for 

e ~ " ' " " = l d n c ( 4 ) S ( ~ I d ' x 4 ( x ) - &  1 exp ( - I 9 d 4 x  1 (2.6) 

where o = d4x denotes spacetime volume. This can be expressed in terms of Fourier 
components @( k )  as 

( d n , ( 4 ) S ( @ ( k = 0 ) - & ) e x p  - 3d'x 

(2.7) 

( I  1 e - u V ( d l =  

= 1 dnd4') exp( [ d 4 x 9 ( & + 4 7 )  

where 4' is the deviation of 4 from @( k = O), 

4 = Ql(k = O ) +  +'. (2.8) 
Formula (2.6) enables us to obtain V ( & )  by integrating out all @ ( k )  except Q(k=O), 
which we set equal to &. However, in practice it is by no means an  easy task. To get 
a rough idea of the effect of integration over @ ( k )  we use Wilson's approximate 
recursion formula (Wilson 1972). 

In (2.7) the range of momenta 0 <  lkl< A, bounded by the phenomenological cut-off 
A, is divided in regions 

2-'-'A<lk1<2-'A (2.9) 
where i = 0 , 1 , 2 ,  . . . .  First we integrateout @ ( k ) , f A < l k l < A ,  l eav ing theo the r@(k)  
untouched. Taking the logarithm of this result gives an effective Lagrangian density 
2"" which now only contains @ ( k )  with lkl<:A. Repeating this process yields a 
sequence of effective Lagrangian densities 

S+Z('I+ 2 ' 2 ~ + 9 ~ ~ l + .  . , , (2.10) 

The limit of this sequence, if it exists, is a function of @(k = 0) = $ and is nothing but 
V ( & ) .  Wilson's approximation consists of replacing e"" by 1 for small k, and by * I  
for large k,  when it occurs in the Fourier expansion. 

With this approximation we construct a sequence of approximants to the effective 
potential V ( 6 ) .  We shall not recreate the arguments of Fukuda (1976), but merely 
quote the results as they apply to the case in hand. Each step i n  the integration gives 
rise to an 'effective' potential U ( 6 ) .  If, a t  the Ith step, we denote this potential by 
U,($ ) ,  then U , + , ( & )  is given in  terms of U,(&) by 

U,+,(&) = 4' In{f( ~d&))/.f(uj(o))} (2.11) 

where 

in which d is taken to be four again 
Beginning with 

U,,(&) = Ac-l In $' 
the recurrence relation generates a sequence of U,'s. The limit 

lim U,(&) = v(&) 
I-_ 

(2.13) 

(2.14) 
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is the effective potential we need. We note that V ( 6 )  is independenf of the cut-off A, 
except through $ = $ / A .  Further, by construction V ( 6 )  is convex, as befits a free 
energy, irrespective of the centra! spike in U. 

The results of the numerical integrations are given in figures 1 and 2. We note that 
for A small (figure l ) ,  e.g. A=0.25,  convergence starts after a few iterations (in fact 
seven iterations are sufficient for this value of A ) .  V ( 6 )  becomes flat, assuming the 
s:anda;d ‘bxke:’ shape. !E partic-!ar, ?($) is !?a: ~ $ I <  6,-, whex 6,- app;oxima:e: 

R J Rivers and C C Wong 

Figure 1. Plots of U,,(&).  U,(&) and U,(&) as a function of & a1 A =0.25 
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d 

Figure 2. Plots of U,(6),  U,(&) and U , ( 8 )  as a 
function of & at A = 7.0. 

with no apparent shift during iterations. This supports the scenario of de Alfaro et al. 
As A becomes large (figure 2)  there comes a critical A, ( A c <  7.0) above which the 

A + 4  behaviour completely dominates. Thus no symmetry-breaking is seen after renor- 
malization. In other words, the theory possesses a symmetric phase and a broken- 
symmetric phase separated by a critical value A = A V .  Spontaneous symmetry-breaking 
occurs only when A < A,. When, later, we reconsider the theory from its high- 
temperature expansion, we shall estimate A, directly. 

Had we not taken the conformally-invariant choice, but the more general scale. 
covariant measure (Klauder 1981, Ogielski 1983 and  Gent et a/  1986) 

d@6)  = d n ( d )  fl l$(x)l-” (2.16) 

also compatible with (l.15), the results are qualitatively unchanged for B<O. For 
example, on repeating the above analysis for B = -2.0 we find a critical coupling A, = 15. 

For B > O  the central logarithmic spike in v($) becomes a logarithmic dip, and 
we only find a symmetric phase, just as in the semi-classical analysis. 
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3. Removing the cut-off 

If we take A-CO directly in (2.3) the semi-classical potential diverges. De Alfaro er 
a1 restricted themselves to finite A, and were able to avoid considering the continuum 
case. However, we know that this divergence is an artefact of the semi-classical 
approximation and  that, if properly normalized, the limit will most likely exist. 
However, there is no  guarantee that it displays symmetry-breaking, or  even that it 
describes an  interacting theory. Therefore, it is worth trying to understand better the 
effect of the conformal measure invoked by de  Alfaro er al in the infinite cut-off limit. 
As we said earlier, non-canonical measures have been proposed as a step towards 
more fundamental (e.g. non-trivial, renormalizable) theories and the implications of 
these measures have not been fully understood. 

conformal scalar theory is, we consider its 
generating functional 

R J Rivers and C C Wong 

T o  see what the renormalized A + 

Z [ j l =  I d W + )  exp[ -1 d d x ( z ( 4 ) - j + ) ]  (3.1) 

where, although we are working in d = 4  dimensions, we have left d explicit. The 
Lagrangian density 2(+) is given by (1.4). The most convenient tactic is to put the 
theory on a hypercubic lattice with lattice spacing a. Z [ j ]  can be written in terms of 
dimensionless spin variables 

uk = a ' " - " ' + ( a k ) / ~  (3.2) 

situated at sites ak, k = ( k , ,  k , ,  k , ,  k4) E H'. The quantity K is an inverse temperature 
(in units in which Boltzmann's constant is unity). In terms of U, a, K ,  Z [ j ]  becomes 

where 

The spin-! 

A = d K  

= K'Aa"-" 

- a a 1 2 + ' I w  
K -  J ( a k )  

in coupling term K,,, (with no dii  ma l  component) is 

/, m nearest neighbours 
otherwise. K,,, = 

(3.3) 

(3.7) 

Prior to taking the continuum limit, a - '  = A  provides a natural momentum cut-off. I f  
we were to put the change in measure into the exponent it would exactly correspond 
to making the identification (2.3). 

On defining the single-site spin distribution p(u) by 

d p ( u ) = d u l u l  exp[-(Au'+uu4)] (3.8) 

Z [ J ]  can finally be written as 

(3.9) 
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a continuous-spin ferromagnetic of the type discussed in great detail by Baker and  
Kincaid (1981) and others. The change of variables in (3.4) onwards maps A into U, K.  
We eliminate the extra parameter by imposing the Baker-Kincaid normalization 
condition 

(3.10) 

That is, 

d v l u  U' exp(-Au'-uv4)= dulvl exp(-An2- uv4).  (3.11) J J 
This fixes A = A(u)  as a calculable function of U, or  vice versa. Because of the factor 
1 c r  in d p ( u ) ,  that depresses small U, (3.9) describes an Ising-like system. 

To recover the continuum limit we need to go to the critical region of the system 
where, for a second-order phase transition, the correlation length becomes infinite in 
lattice units. Since correlation length has the interpretation of inverse mass for the 
quanta of the theory (and is fixed in cm), going to the critical region corresponds to 
driving the lattice size a -* 0. 

The spin correlation functions of interest to us are 
(i) the susceptibility 

x = 1 (V"Uk )c 
k 

(ii) the fourth cumulant 

X(Z, = 1 ( ~ o ~ k ~ , ~ m k  
k l m  

a n d  
(iii) the second moment of the spin-spin correlation function 

(3.12) 

(3.13) 

where spin averages are defined by 

(3.15) 

and c denotes the connected part. 
I n  terms of the above we can define the correlation length 

and  the dimensionless scale-invariant renormalized coupling constant 

(3.17) Xli, 
&!,=-- Si'X2' 

Assume for the moment that the system displays a second-order phase transition 
as the temperature approaches a critical value K --f K,. The critical behaviour of the 



(3.18a) 

(3.186) 

( 3 . 1 8 ~ )  

(3.18d) 

whence 

gR=fS(K) (Kc-K) '  (3.18e) 

where 

~ = d u f y - Z A  (3.19) 

andf;  ( i  = 1, .  . . , 5 )  are analytic in K (neglecting confluent and logarithmic singularities 
at present). Although d = 4  we have continued to display it explicitly. In  the scaling 
(continuum) limit K + K, the magnitude of K is crucial, as it determines whether the 
theory is trivial ( K > 0) or non-trivial ( K = 0). 

As a guide to the value of K (and K c ) ,  and to make a second-order transition 
plausible, we conclude this section by evaluating the Landau mean-field approximation 
to (3.7) (see, for instance, Brizin er a /  1976). We would expect this to be correct for 
d > 4, and a good guide for d = 4. Inserting the identity 

into (3.7) gives (up to normalization) 

(3.21) 

where 

A(x) = In dW(v) e"'. (3.22) 

Expanding in powers of c gives, to leading order, the saddle-point result that 

I 
W [ J ]  = In Z [ J ]  is given by 

WM FAJ 1 = - f 1 (2; - J j  1 K i ' (2, - J, 1 + 1 A ( X k  1 (3.23) 
; + i  h 

where 

K ; ' ( 2 )  - J , )=A ' ( j i ) .  (3.24) 

In terms of the magnetization M, = A'(Xi) the effective action is given as the usual 
Legendre transform 

~ M , , [ M ] = - W M , , [ J ] + Z J ~ M , = - ~  1 M,K, ,Mi+ l  B(Mi). (3.25) 
i (*, 

For consrant magnetization Mi = M (and constant 2 ; = 2 )  
B ( M ) = - A ( i ) + M j  (3.26) 
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permits a Taylor expansion 

(3.27) B ( M ) = - M 2 + -  a P M 4 + p  M h + O ( M X )  
2! 4! 6 !  

in which (12=1 from (3.10)) 

a n d  

P = 10(1 , -3)~  - ( i6- 15( 14-2)) 

where 

(3.30) 

(3.31) 

are  the normalized moments of p(u) .  

T,,,[M]/N then takes the form 
On an N-site lattice with constant magnetization the resultant free energy density 

(3.32) P I-,,,[ M I /  N = f (  1 - 2  d K ) M 2 + -  M * + p  M6+O( MR) 
4! 6! 

displaying a phase transition at the critical temperature 
_ W F  , _ . L " F , - ,  ,<. ' ( K c ' ,  .=id', 

At K = Kc. A and U take the critical values 
A y F = d K y F = i  

~ ~ ~ = 0 . 1 4 5 9 7  

( the  iaiier foiiowing from (3 , i l ) ) .  By ihe iecuiieiice rehiion foi  the I>,,, 

(3.33) 

(3.34) 

- A  n + l  
2u 2u 12"+4=- I., (3.35) 

for A =Ac  and U = uc we have 

p = 8 > 0  

a n d  

p = 1.25> 0 (3.36) 

signalling a second-order transition. 
Furthermore, in d = 4 dimensions, equation (3 .5)  gives a critical value for A, 

A Y F =  u y F / ( K y F ) 2  = 64uYF -9,342. (3.37) 

Whereas the cut-off theory permitted any value of A, the continuum limit drives A to 
A,, the critical value of the cut-off theory. The mean-field result is fairly close to the 
value A,-7 of section 2. At a later stage we shall use U( of (3.34) as  a starting-point 
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for a more sophisticated calculation. A little more work gives values for the critical 
exponents 
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V h l F = f  

A M F = $  
Y M F ' l  

whence (for d = 4) 

(3.38) 

KMF=O. (3.39) 

These lattice results are identical to those for the canonically quantized ,444 theory in 
the same mean-field approximation. In  this case we know that K = O  does not imply a 
non-trivial theory, although from our previous comments it should. 

The reason is that the forms presented in (3.18) are too simple. In d = 4  dimensions 
logarithms are generally present, giving correlation functions with the behaviour 

F -  (.K- K)"l  In( K,- K)Ib (3.40) 

as K -t K,. Thus, even if the critical powers are those of mean field theory, the residual 
logarithms can still enforce triviality upon the theory. 

4. The high-temperature expansion 

Baker and  Kincaid (1981) have calculated the high-temperature series u p  to N = 10th 
order in K (recently Liischer and  Weisz (1988b) have extended the series u p  to N = 14th 
order in K )  for x, x , ~ )  and pi>,  in the form 

N 

F ( K ) =  f n K "  (4.1) 

by directly expanding the exponential in (3.12). The coefficients fn are given in terms 
of the moments I*,  of (3.31). 

For the moment, let us forget the likely existence of logarithms as indicated in 
(3.40) and pretend that only powers are present. If the true behaviour of the correlation 
function F ( K )  is 

(4.2) 

n = o  

F( K )  -f( K ) ( K c  - K )' 
as K + K,, how d o  we identify E from a partial series like (4.1)? 

The most convenient method is to use Pad& approximants for 

E d +- In f( K ) - lnF(K)=- 
d K  K,-K d K  
d 

which is represented by the (shorter) series 
N - l  d 

- l n F ( K ) =  g,K"' 
d K  ,"-,I 

(4.3) 

(4.4) 

in which the g,, are determined directly from the f" after identifying the logarithm by 
its Taylor series. Pad& approximants are ideally suited for estimating pole positions 
and residues and this method for calculating critical indices and temperatures is termed 
the 'd-log P a d 6  method. 
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Recall from (5.3.4) that 

A = d K  (4.5) 

12(A, U )  = I .  (4.6) 
I f  we fix U ,  then A is also fixed through (4.6). As in the case of the mean-field 

theory of the previous section, the system is determined uniquely at its critical tem- 
perature K,. In practice, K, (and hence Ar through (4.5)) is also determined from 
the d-log Pad6 series (4.4). Consistency thus requires that U is driven to its critical 
value uc,  at which value A(u,)=A,. 

It is impossible to pin down uc exactly numerically. To obtain a preliminary estimate 
we begin with the mean-field result of (3.34), ~ ? ~ = 0 . 1 4 5  97. From this first guess we 
use the d-log Pad6 approximants to calculate KF' for a few different values of U"' 

around uFF, and calculate the corresponding A?' via (4.6). On plotting AL?fKg) 
against U:', we can track down a point U ,  at which A:'/ K y ' =  d =4.00, using linear 
interpolation (figure 3) .  We then repeat the process sweeping a smaller region around 
this value of U* to obtain a better value. 

and the normalization condition (3.10) 

In our case, we have (up  to variation between different approximants) 

U, = 0.1254 

A, = 0.5643 

K, = 0.140 81 (0.000 07) 

d = A,/ K, = 4.007 52 (0.002 3) 

This gives a critical value of A 

A, = uC f K: = 6.325 

* 

(4.70) 

(4.76) 

(4.7c) 

(4.7d) 

(4.8) 

0.08 0.10 0.12 0.14 
U0 

Figure 3. Plot o f  A /  K,- a i  a function of U,,. The full l i n e  dentoer A I K ,  = 4 and the broken 
line indicates the extrapolated values or  AIK,. within the range U,,r (O.IZ.O.131. 
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lower than the mean-field value (3.37), and compatible with the numerical analysis of 
section 2. 

(If, alternatively, we had chosen the normalization condition A =4.0,  for which 
Kc = 1, then a repeat of the high-temperature Pad& analysis gives A, = uc = 6.327. This 
confirms that A c  is independent of how the normalization condition is fixed.) 
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What matters is that, at the value (4.4) of uc-, we find that 

y = 1.091 26 (0.001 73)  (4.9) 

which deviates significantly from the mean-field value y = 1, whereby 

K =0.314(0.05).  (4.10) 

This value is also significantly different from the mean-field value of zero (3.39), and 
is similar to the canonical results Baker and Kincaid (1981). At this level of analysis 
we would expect the theory of (3.3) to have a trivial continuum limit. 

Because of the numerical similarity to the canonical theory which, as we have said, 
had logarithmic corrections we should consider such corrections in this case. Suppose 
again that the scaling behaviour of the susceptibility becomes 

x = f , ( K ) ( K , -  K ) - ? /  In( K,- K)/-zy (4.11) 

where f2 is analytic at K = K ,  and y = I ,  the mean-field exponent. 
We can use the high-temperature series again to estimate z, following Adler and 

Privman (1981,1982). The method consists of using the x series to construct the series 
for the function 

1 

7 
g( K )  =- ( K c -  K )  In( K,- K )  (4.12) 

which has the property 

lim g ( K ) = z .  (4.13) 
K - K c  

Thus the standard d-log Pad& approximants to g ( K )  evaluated at K, will provide 
us with the estimate for z. We know the value of y, yet the value of K, in (4.11) 
remains unknown. To overcome this problem we use the K, value Kc=0.1408 of the 
previous analysis (equation ( 4 . 7 ~ ) )  as a preliminary estimate. Then we evaluate different 
order Pad& approximants to z for different values of K, in the neighbourhood of the 
initial choice. These approximants give rise to a family of Z( K,) curves on the Z - K ,  
plane, which are expected to converge near the true value of Z and K,. 

The area of convergence is located by the standard, yet somewhat subjective 
‘windowing’ approach of Adler et a /  (1981,1982) (see also Vladikas er a /  (1987)) in 
figure 4. From this z is found to be 

z = -0.29 (0.03). (4.14) 

The magnitude of z suggests that the presence of logarithmic corrections to mean-field 
scaling is genuine and is very close to the canonical A44 renormalization group 
prediction z = -f .  
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Z -0.351 ' 

0.1405 0.1 
KC 

25 

Figure 4. Plot ofthe Pad& appraximants to the logarithmic correction factor Z as a function 
of K, at U,=0.1254. The 'window' isolates the area ofconvergence. 

In any case, our results (4.10) and  (4.14) suggest, in their different ways, that the 
conformal scalar theory is as  trivial as its canonical counterpart. 

5. Renormalization group analysis 

Given the crudity of the Wilson block-renormalization approximation in section 2, we 
need to dispel thoughts that our conclusions given there are dependent on the details 
of the approximation. Let us return to the equivalent spin-system (3.8). Rather than 
continue with the tactics of Baker and  Kincaid (1981) we shall adopt the formalism 
of Liischer and Weisz (1987,1988a). To facilitate comparison between our work and 
that of Liischer and Weisz (1987,1988a), it is convenient to change the formalism 
slightly. Instead of imposing the constraint (3.10), it will be convenient to fix 

K = l  (5.1) 

throughout. From this viewpoint there is a critical coupling A = A<.  (for which &(A,) = 
1) rather than a critical temperature. The  value of hc is taken from (4.8). For A > A, 
we Brp in the symme!ric phase, and for h < ~ h c  in the symmetry-broken phase. 

From our  previous discussion we believe the continuum limit A = Ac to be trivial, 
in d = 4 dimensions. That is, the critical behaviour of the renormalized coupling 
constant g ,  is such that i t  vanishes there. However, this triviality need not make the 
theory useless for the description of the particles that are the underlying quanta, 
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provided we allow for a large but finite ultraviolet cut-off A which we continue to 
identify with a-‘  in the lattice theory. If ,  for low-energy processes where E’/A’ is 
small (here E is a typical energy in the process), the corresponding amplitudes are 
universal, up to terms O( €‘/A’), we have a sensible effective theory. 

Because our  starting theory (1.4) has vanishing bare mass the vacuum expectation 
value U,=(&), renormalized mass m R  and A will be mutually constrained. This is as 
we would have expected from semi-classical analysis of (2.3), for which v is given by 
(2.4). The classical particle mass m induced by the symmetry breaking satisfies 

R J Rivers a n d  C C Wong 

m 2  = 8 f i  A2 = 4 . ~ ~ 1 ~ ~  ( 5 . 2 )  

whence 

vm = 2A’. (5.3) 

Unfortunately, from (5.3) it is apparent that we cannot simultaneously impose A / m  >> I ,  
A / u  >> 1,  as we would like, for the classical cut-off theory to make sense. (This point 
was glossed over by de  Alfaro et al.) However, the renormalized theory is more subtle 
and  we shall see that (5.3) is over-restrictive. 

We have already shown how the high-temperature series for (3.3) (i.e. the expansion 
in K at fixed A, U )  can be used in the vicinity of the continuum limit in the symmetric 
phase, To demonstrate the circumstances under which the non-scaling terms O(€’/n’) 
can be ignored we adopt the tactics of Liischer and Weisz (1987, 1988a), in which the 
high-temperature series results a re  used as boundary values for the renormalization 
group ( RG) equations. 

There is a problem. The  non-canonical nature of the single-site distribution (3.8) 
has no  effect on our ability to compute the high-temperature series, which only uses 
the moments of / . ( U ) .  However, the RG equations require a series expansion in the 
renormalized coupling g, for small g,. Since (3.9) does not permit an expansion about 
a Gaussian (i.e. Feynman diagrams) we do not have a simple way to proceed. 

A solution to this was indicated in section 3, where we found it. convenient to 
rewrite the spin system (3.3) in terms of a canonical mean field ,y, with translationally- 
invariant measure Ox. In section 3 we concluded that the continuum conformally- 
quantized theory was in the same universality class as its canonical counterpart. We 
shall take this further, in arguing that, near the critical point, it is very plausible that 
Z [ J ]  can be written as the canonical spin system (obtained by rescaling the x’s )  

where t,,, = K ( A )  for nearest neighbours, zero otherwise. Necessarily, the S-system 
(5.4) is equally trivial in the continuum limit. 

We are then in a position to apply the practices of Liischer and Weisz (1987, 1988a) 
to determine the behaviour of the cut-off theory. I n  section 7 we shall set u p  the 
correspondence between the U- and S-systems and determine K ( h )  for A > A c  near 
the critical point. This enables us to determine the parameters at the critical point 
sufficiently accurately that we can solve the RG equations in the symmetry-broken 
phase and, establish the counterpart to the classical result (5.3). In this way we shall 
quantify the qualitative proposal of de  Alfaro et a /  that symmetry breaking can be 
sensibly adduced to a change of measure in the cut-off theory. 
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6. The canonical mean field theory 

Let us rewrite (3.21) as 

- ~ ~ x , I T ' x j + l A ( x h + r , ) )  h (6.1) 

where A(x)  is more conveniently expanded as (cf (3.27)) 

(It is not necessary to re-express M2,j in terms of the since we shall have no use 
for the details. Remember that, on fixing K = 1, l2 is no longer equal to unity.) 

To reshape Z [ J ]  in the form (5.4) requires three separate steps. Firstly, we saw in 
section 3 ihai ihe mean iieid iheory provided a fair esiimaie or' A,. To obiain i h k  
result from (6.1) we Fourier transform I, as 

v(q)=1 I,.! exp(iq.*!,) (6.3) 

where rv denotes the position of all nearest neighbours to the point i. For small 
q. IqI" a- ' ,  in  d dimensions 

Thus the quadratic term in the exponent of (6.1 j becomes, in Fourier transform variables 
(small q2) 

This corresponds to an effective free propagator (or two-spin correlation function) 

2d 
So = 

a2q ' /2d+(l  -2d1,) 

So shows infrared critical behaviour when 

p i =  ( 1  -2d12(A))/a2 

vanishes. This occurs at A = hc of (3.37). 
Define ,fk by 

(6.6) 

, f r  = 2dxX. (6.8) 

It is sufficient, for the purposes of describing the model near its critical behaviour, to 
consider only its long wavelength contributions. I n  this approximation the quadratic 
contribution to the action 

=%=h22 (2d&+ q2)IX(q)12 (6.9) 
4 

is again expressible in terms of I , ,  rather than I ; ' ,  to take (6.1) into the form 

-2[ , f ]+1  [ f ,hi  +0( h j ) ] + O (  hi,f :)  ) (6.10) 
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where 
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h,=2dI2(A)J, 

and 

9[ j ]  =-$I I , , j , j !  +1 [ d +  d(l-2dl2(A))]j? 
I.,  h 

(6.11) 

(6.12) 

The next step is the observation that, in d = 4  dimensions, the infrared singular 
behaviour comes from terms O ( j 4 ) .  We adopt the general belief that the 'irrelevant' 
terms O ( j 6 )  can he taken into account near to the critical point by renormalization of 
the quadratic and quartic terms. The effect is to replace 2[ j ]  by 

(6.13) M A A )  ( 2 d ) 4 j t  2 [ X l =  -iZ a ( A ) f , f A + x  ( a ( A ) d + b ( A ) ) X : + Z  g ( A ) T  

where 

'.J h k 

M4(A) = 3I;- 14. (6.14) 

The factors a(A)  and g(A) are multiplicative renormalizations of the kinetic term and 
quartic term respectively, and b(A) summarizes the net result of renormalization for 
the quadratic coupling. All these are collective effects due to the O ( f b )  terms whose 
coefficients are functions of 1 2 , , ( A ) ,  thus determined by A only. 

To simulate the form (3.3) we first consider the quadratic coupling 

As it stands u ( A )  is not only A dependent, but contains an unknown factor. We fix 
this by rescaling the field j A  yet again to S I ,  

The Lagrangian now becomes 

where ti = M,(Ac)/4!(2d)' is known 
The source coupled to Sh is 

(6.16) 

(6.17) 

(6.18) 

having forced ti to he independent of A .  
The next step is to fix the coefficient of SI to he A independent also. This is not 

possible in (6.17) as it stands. In order to effect this, we extend the long wavelength 
approximation by modifying the short-range modes when the long-range modes are 
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large and dominate. If we scale q2 in (6.5) by a factor t ( A )  (thus preserving the infrared 
behaviour) -Y[S]  of (6.17) becomes 

6p[S1= - f (A)S,S,I,, +I: A(A)S: + r7 1 Sf (6.19) 
2.J 

where 

and  ti, ĥ  remain unchanged 
We note that 

(6.20) 

(6.21) 

(6.22) 

Assuming that a(Ac)/g(Ac)"* is not far from unity, we can choose t (Ac)  close to unity 
so that 

(6.23) 

This fixes A(Ac) uniquely. By choosing t ( A )  judiciously it is possible to keep ,%(A) 
fixed at A(&). This defines f ( A ) ,  and  forces K(A) to have a particular dependence in 
A, None of the answers should depend on r, but the approximation is obviously better 
when f = 1 .  Should the calculation give r e  significantly different from unity, it is better 
to redefine R(A,) so that r c =  1 again. We shall comment on this later. 

The final step is to ignore the terms O(J,y') and O(J' )  in the source term [A(,y+J) - 
A( ,y ) ]  in (6.10) near the critical region and hence to keep just the linear term Z, h,S, 
in h after the change of variables has been made. Although difficult to justify fully, 
this assumption is generally adopted in a field theoretical approach to critical 
phenomena (Brk in  et a /  1976, Wegner 1976 and Brout 1974). We shall see later that 
it is justified empirically. 

Given this assumption, the generating functional in  2 field in (6.10) takes the form 

Z [ h l = N  n d 2 , e x p  - 3 [ n ' l + Z 2 , h , d h ) )  (6.24) 

where 3[2] is of the form (6.13) and p ( A )  is an appropriate renormalization factor, 

I .  ( 
Rescale 2 by ,& = f , p ( A )  and (6.13) becomes 

where the term involving the source h, remains Z, h , k  
We &e that arguments from (6.13) onward remain equally valid for a ( A ) / p ' ( A ) ,  

b ( A ) / p 2 ( A )  and g ( A ) / p 4 ( A )  as for a ( A ) ,  b ( h )  and g(A), and we can choose @ ( A ) =  1, 
without any loss of generality. 
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To summarize, in the critical region we have argued that the generating functionals 

lbl 
IO1 

and 

Z [ i ] =  H d S , e x p  - A ~ S f - r i ~ S ? + ~ K  1 S k I I S , , , + x i k S k )  (6.27) 

describe the same critical behaviour, subject to K ( A , ) =  1 ,  etc, provided we relate ik 
to JA through (6.18). 

We can therefore assume the known results for the canonical theory (6.27) to 
demonstrate that, in the vicinity of the critical region appropriate to a theory with 
cut-off A, the non-canonical system (6.26) also behaves like a cut-off canonical theory. 
In particular, it permits a phase with broken symmetry entirely induced by the change 
in measure, in which A, the particle mass m R  and the field expectation value U=($) 
are related. Low-energy results are independent of A. 

Before doing so, we observe that the model of (6.26) only depends on the single-site 
measure p ( u )  via its moments. Thus, had we begun with a canonical theory 

! h  ( A k 1.m h 

- 1.0 - 
10 102 10' 1 10 10' 

A h ,  A h @  

Figure 5. ( a )  Plot of g, as B function of A J m K  in the symmetric phase of the canonical 
A4:theoryat u=4 .7699x  I O ~ ' , A = 1 - 2 u , c h o r e n f ~ o m [ 7 ] . ( h )  Plolofm,/v,,asafuunclion 
of A/mR in the broken symmetric phase of the canonical Ad: theory at U =4.7699x IO-', 
A =  I - 2 u ,  chosen from [7]. The squares denote results from our method and the triangles 
denote results of [7]. 
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I. Comparing the U- and S-systems 

The spin correlations in the different systems are obtained by differentiating In Z[J ]  
:nd In Zlhl with respect to .I, and i, respectively. Given the relationship (6.18) between 
h, and J, the correlation functions x, x 2 ,  pL2 are related as 

The p21s contains the term f ( A )  since f i2  contains the distance 1 between sites in its 
definition 

and the momentum scaling changes I without affecting a. 
The renormalized mass mR, coupling g ,  and ZR are defined in the usual way; 

( 7 . 8 )  

(7.9) 

(7.10) 

Near the critical point, we have the following correspondence between the  parameter 

(y = 1, ,4 -4 = ra"-4)*( ,q(A),  '4, U), ( 7 , i i )  
In order to pin down the image of ( 1 ,  d, A )  in ( K ,  A, U) space we really need to consider 

2 -  2 (7.12) 

space of both systems: 

x,211<r.*, - X1*1lS,K, 

x I<,,*, x IS& 

for a set of A ; a  A,, Ki < K,  in the symmetric phase. 
Remember that, for the U system, the temperature K was fixed at unity. Thus, for 

A > A r  we need to calculate x, xi. etc slightly away from the critical region. To do this 
we evaluate the high-temperature series for the modified U system 

Z ' [ I ]  = { n (duxlukl) exp(-A'x u: -u ' ! :  u;+$z ulll,,,un, + J I u k )  (7.13) 
x 
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A 

Figure 6. Plot of the critical temperature & ( A )  for the system (3.13).  K , ( A , )  ~ 1 by 
definition. 

where A’, U’, J are evaluated at K = I (e.g. A’ = d )  but I , ,  remains given in terms of 
an inverse temperature K. 

The system (7.13) shows critical behaviour at an inverse temperature K,(A) for 
which & ( A c )  = 1 (figure 6 ) .  Ideally we should choose several points Ai. In practice 
we choose a couple, A ,  = 7.5 and A 2  = 8.0, and assume linear interpolation in the vicinity 
of A, for the parameters a(A) ,  b ( A )  and g ( A ) .  

We are now able to evaluate K as a function of A in the vicinity of Ac using Pad6 
methods for the 11-term series of Baker and Kincaid (1981). The details of the 
calculation are given elsewhere (Wong 1990). The results are given in table 1. 

8. Solution to the renormalization group equations in the symmetric phase 

Given the initial value of m&, etc, in table 1 we can proceed to get closer to the 
critical point K, = 1 through the S system RG equations. These determine the evolution 
of ihe Ssysrem paramerers as rhe critical point is approached at fixed A, I?. Since we 
are dealing with a conventional quartic interaction we continue with the methods of 
Luscher and Weisz (1987, 1988a), to which we refer the reader for details. Once this 
has been done the work of the previous section can be used to calculate the correspond- 
ing u-system correlation functions mRlu, etc. In this way we determine the behaviour 
of the u-system in the symmetric region A > A,. 

In perturbation theory the p-function (and y ,  S functions) for the S-system is 
known to three loops. The crucial observation is that, since p is positive, the RC 

equation drives g,l, to zero as m& decreases and perturbation theory becomes an 
ever better approximation as we get closer to the critical line. Specifically, in the limit 
that mRIS (mR1,) goes to zero the coupling gRl, goes to zero (as does gR/,,) according 
to the implicit asymptotic formula 

mRIS = c,(A, L i ) ( h & d S ) P ” P i  exp(-l/p,g&)[l  +o(gRIS)l (8.1) 

- 

where C , ( &  17) is a constant. 
We also have 
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and 
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Zgls = C,(A, ~ ) ( g R l S ) - ” Y l  +O(g,ls)) (8.3) 
p ,  and p2 are the one- and  two-loop coefficients of the 0-function. 

By integrating the RG equations using the data of table 1 as initial values using 
numerical algorithms such as  the Runge-Kutta method, we have evaluated 
m,l,,g,ls, Z& and ZFls for K u p  to K,= 1. The values are given in table 2. The 
corresponding results for the u-system are also given there, on converting from K to 
A. A plot of g,l, against A/mRlc, is given in figure 7 ( a ) .  

However, our  main interest is in the broken symmetry phase, and it is to this that 
we now turn 

50 

gR 

30- 

I Q  
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9. Calculations in the broken symmetry phase 

For A < A,, i? > Kc., the reflection symmetry S +  - S  of the action (6.26) is spon- 
taneously broken and the field S acquires a non-zero expectation value 

whereas 

a In Z [ J ]  A =  . . I 
d J  l i = o  

They differ by a finitc quantity. 

(1987,1988a). In particular the renormalized coupling is given by 
Again we follow the definitions and renormalization scheme in Liischer and Weisz 

(9.3) 
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where vR is the renormalized vacuum expectation value of the scalar field. We can 
solve the Callan-Symanzik equation in the same way as in the symmetric phase, 
obtaining the asymptotic form of the scaling laws 

(9.4) mRIS = ci(kk3RlS)-"'"' exp(-l/p,gRIs)[l +o (~&)I  
where C :  is an  integration constant depending on A, G, and p , ,  p ,  are the one- and 
two-loop coefficients of the P-function (identical to those in the symmetric phase). 
Simi!a_r!y, we have !he other sca!i!?g !a*. 

'RI, = c;[l +O(gRlS)l (9.5) 

( K c -  I ( - )  = C;gRl,"zm',[l+~(g,ls)l. (9.7) 

z z l S =  cggRli''3[1 +O(gR/S)I (9.6) 

The  Ci are not quite the same as the C, in (8.1)-(8.3), determined in  the last section. 

are defined a t  the critical line and  thus they both can be given an  interpretation in 
terms of the single critical massless theory. 

Without repeating the arguments of Liischer er a /  (1987,1988a), it turns out that 
for our (and their) choice of renormalization conditions 

ci(A, ti) =e'I6C,(A, G) (9.8) 

Now since each C,(A, ti) has been determined to a reasonable accuracy from the 
calculation in the symmetric phase, Cl(A, ti) is thus determined by equations (9.8), 
(9.9) and may be used as initial data for the integration of the renormalization group 
equations along fixed (A, 17) i n  the broken symmetry phase starting at I(- = &= 1. 
Large values of are reached by integrating the Callan-Symanzik equations numeri- 
cally using the three-loop formulae for p, y and S in Liischer ef a /  (1987, 1988a) and 
we terminate the integration when mRIS reaches 0.5 (mRIt, = 0.533). 

We note that, although in principle the upper limit would be mRl,, = 1 (or written 
in explicit lattice units mRlcr = A ) ,  when m& > 0.5 we expect the O( m i  In mR) contribu- 
tions in the p ( y  and 6 )  function to become significant. However, the O ( m i  In m R )  
contributions are non-universal (ambiguous) and dependent on the lattice chosen. In 
Luscher ef a /  (1987, 1988a), this ambiguity is demonstrated to be an  intrinsic property 
of the renormalized vertex functions and thus unavoidable. 

The mKl,, etc are calculable from m&, etc, via the relations (7.1)-(7.3). The results 
of the integration are summarized in table 3. Here we see that the qualitative scaling 
behaviour in both the non-canonical and  canonical systems is very similar. 

More relevantly to our initial aims, in table 3 we note that for mRIS - 0.5, g& = 23 
is less than a half of the tree unitary bound g& =47. Hence perturbation theory 
remains valid. As the scattering length is positive, the long-distance force is attractive 
and  bound states may exist. A rough estimate of the threshold is given in Liischer er 
a /  (1987,1988a) to be gRl, = 35. Thus for a cut-off A 2  10m,, bound states are unlikely 
to be present, while in the range 2m& < A  C 10m&, bound states may exist but their 
binding energy should be rather small. Given the assumptions and approximations 
made in this work, the solutions obtained here should be checked by other more direct 
methods such as the Monte Carlo simulation (Kuti er a/ 1988). In particular, the value 
of f<-= 1.17, which makes the approximation of neglecting short wavelengths more 
suspect. In fact, the curve in figure 7 ( b )  is expected to be higher than the true result 
in the same way as that for the canonical theory in figure 5 ( b ) .  Redefining E(&)  so 

U -... ....I-. :,...- L.. I . . .  "-- P .̂.-I 0, ^"- L^ "-."L,:"L-A ^:_^^ L-.L .L^ P l  "..A ,- 
. . Y V S Y C I ,  I L I ' I L I V I I J  " C L W C C l l  L, all" c ,  C'UI "C F J L L I W I I J I I G U  3111LC "UUl LllC c ,  all" bi 

c&i, 3)  = C,(A, 17) i = 2 ,  3. (9.9) 
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- N 0 n e w, e e e m - N n - ? m e e m O l O  " m m  
0 0 0 0 0 0 0 0 0 -  y 1 y y  
0 0 0 0 0 0 0 0 0 0  0 0 0 0  

- N n * - a c m m z  0 0 0 0  
9 0 9 9 4 0 4 4 9  C ? ? ? ?  
0 0 0 0 0 0 0 0 0 0  0 0 0 0  
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that f C =  1 lowers this curve, and  gives a more reliable result. However, the qualitative 
conclusions are unchanged and, giving the messiness of the calculations, we d o  not 
repeat them here. However, the contrast in figure 7 (b j  between the renormalized and  
the ‘classical result’ (5.3) is striking. In figure 7 ( b j  we have no difficulty in simul- 
taneously enforcing A / m &  >> 1, A/u,l,, >> 1. 

10. Conclusions 

In the earlier sections of this paper we showed (numerically) that the continuum 
non-canonical theory of a single real field was in the same universality class as its 
canonical counterpart. In the latter part of the paper we argued for a much stronger 
link between the non-canonical and  canonical cases, rewriting the non-canonical theory 
as a ‘mean field’ canonical theory. 

Under fairly general assumptions we have established a correspondence between 
the two theories near the critical point. The scaling behaviour in both phases of the 
non-canonical system can then be  determined through the scaling behaviour of the 
canonical system. 

With the substantiation of the conjecture of de  Alfaro er a /  in mind, our interest 
is in the broken symmetry phase of the cut-off theory (cut-off A).  Just as in the canonical 
model examined by Liischer and  Weisz (1987,1Y88a), from whom we have borrowed 
the tactics, we obtain an  upper bound m,<3.0un o n  requiring A a 2 m n .  (Here m R  is 
the renormalized mass and  vR the renormalized vacuum expectation value.) However, 
since the original conformally-invariant model has only one hare coupling, fixing any 
two parameters amongst m K ,  g , ,  Z,, A and  A will determine values of all the others. 
For example uR = 250 GeV, m R  = 500 GeV implies a cut-off A of 60 (IO) Tev where 
classically A =250GeV. A plot of m R / v R  against A / m R  is given in figure 7(b ) .  Unlike 
the case in Liischer and  Weisz (1987,1988a) the curve does not denote an upper hound, 
hut a curve in which the theory lies. We see that the cut-off A is very much larger than 
that suggested from classical considerations (see, e.g. (5.3)). Had this not been so, the 
scheme would not have been sensible. 

The scheme by  Luscher and  Weisz that we have borrowed from so liberally was 
developed to calculate the Higgs mass bound. Both the canonical linear u-model and 
the minimal Higgs mechanism suffer from an arbitrariness that the non-canonically 
quantized conformally invariant theory has managed to escape while still providing 
spontaneous symmetry breaking. (Although it could he argued that we only require a 
scale covariant measure, rather than a conformally invariant measure. This allows a 
further parameter B to be introduced that characterizes the measure.) It is not inconceiv- 
able that this idea may find real physical application in the above situations. 

In conclusion, despite the unusual path integral representation, the scheme pro- 
posed by d e  Alfaro, Fubini and  Furlan to quantize the conformally invariant scalar 
field theory does fulfil all its semiclassical promises after taking in the full quantum 
effects. The implications for a similar phenomenological quantum gravity theory are 
not unfavourable. 
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